Home
Class 11
MATHS
(1+log(2)(x-4))/(log(sqrt(2))(sqrt(x+3)-...

(1+log_(2)(x-4))/(log_(sqrt(2))(sqrt(x+3)-sqrt(x-3)))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : (log_(2)(x-4)+1)/(log_(sqrt2)(sqrt(x+3)-sqrt(x-3))) = 1 .

log_(2)sqrt(x)+log_(2)sqrt(x)=4

Number of integers satisfying the inequality log_((x + 3)/(x - 3))4 lt 2 [log_(1/2)(x - 3)-log_(sqrt(2)/2)sqrt(x + 3)] is greater than

Solve for x:log_(2)(4(4^(x)+1))*log_(2)(4^(x)+1)=log_((1)/(sqrt(3)))(1)/(sqrt(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

The value of 2(log_(sqrt(2)+1)sqrt(3-2sqrt(2))+log_((2)/(sqrt(3+1)))(6sqrt(3)-10)) is

The value of 6+log_((3)/(2))((1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))...cdots))))

Solve log_(x)3+log_(3)x=log_(sqrt(3))x+log_(3)sqrt(x)+(1)/(2)