Home
Class 12
MATHS
A=[(1,2),(2,1)], then adjoint of A is eq...

`A=[(1,2),(2,1)],` then adjoint of A is equal to (A) `[(1,-2),(-2,1)]` (B) `[(2,1),(2,1)]` (C) `[(1,-2),(-2,1)]` (D) `[(-1,2),(2,-1)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The adjoint of the matrix [(2,5),(3,1)] is (A) [(2,5),(3,1)] (B) [(1,-5),(-3,2)] (C) [(1,-3),(-5,2)] (D) [(-1,3),(5,-2)]

The adjoint of the matrix [(2,5),(3,1)] is (A) [(2,5),(3,1)] (B) [(1,-5),(-3,2)] (C) [(1,-3),(-5,2)] (D) [(-1,3),(5,-2)]

Let X=[{:(x_(1)),(x_(2)),(x_(3)):}],A=[{:(1,-1,2),(2,0,1),(3,2,1):}] and B=[{:(3),(1),(4):}] .If AX=B, then X is equal to: a) [(1),(2),(3)] b) [(-1),(2),(3)] c) [(-1),(-2),(3)] d) [(-1),(-2),(-3)]

If A^(-1)=([2,1],[1,1]) ,then A is equal to: (A) ([2,-1],[-1,1]) (B) ([-2,1],[-1,-1]) (C) ([1,-1],[-1,2]) (D) ([-2,1],[1,1])

If range of y=x/(1+x^2),AAxepsilonR is equal to (A) [-1,1] (B) [-1/2, 1/2] (C) R-[-1/2,1/2] (D) R-[-1,1]

If (1-i)x+(1+i)y=1-3i , then (x,y) is equal to (a) (2,-1) (b) (-2,1) (c) (-2,-1) (d) (2,1)

If (1-i)x+(1+i)y=1-3i , then (x,y) is equal to (a) (2,-1) (b) (-2,1) (c) (-2,-1) (d) (2,1)

If (1-i)x+(1+i)y=1-3i , then (x,y) is equal to (a) (2,-1) (b) (-2,1) (c) (-2,-1) (d) (2,1)