Home
Class 12
MATHS
[" 5.Ampere's circuital law is given by ...

[" 5.Ampere's circuital law is given by "],[[" (a) "phivec H*vec dl=mu_(0)I_(" enc ")," (b) "phivec B*vec dl=mu_(0)I_(" enc ")],[(c)phivec B*vec dl=mu_(0)J," (d) "phivec H*vec dl=mu_(0)J]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Explain : "For some uses Ampere's circuital law ointvecB*vec(dl)=mu_(0)I is easy".

vec k.vec k= (A) 0 (B) 1 (C) vec i (D) vec j

vec(i)timesvec(j)= (a) vec0 (b) 1 (c) -vec k (d) vec k

If vec(a)= 2vec(i) -vec(j) + 3vec(k), vec(b)= p vec(i) + vec(j) + q vec(k) and vec(b) xx vec(a) = vec(0) , then

The maxwells four equations are written as ( i ) ointvecE.vec(dS)=(q_(0))/(epsilon_(0)) ( ii ) ointvecB.vec(dS)=0 ( iii ) ointvecE.vec(dl)=(d)/(dt)ointvecB.vec(dS) ( iv ) ointvecB.vec(dl)=mu_(0)epsilon_(0)(d)/(dt)ointvecE.vec(dS) The equations which have sources of vecE and vecB are

The vector equation of the plane passing through the origin and the line of intersection of the planes vec rdot vec a=lambdaa n d vec rdot vec b=mu is (a) vec rdot(lambda vec a-mu vec b)=0 (b) vec rdot(lambda vec b-mu vec a)=0 (c) vec rdot(lambda vec a+mu vec b)=0 (d) vec rdot(lambda vec b+mu vec a)=0

The vector equation of the plane passing through the origin and the line of intersection of the planes vec rdot vec a=lambdaa n d vec rdot vec b=mu is (a) vec rdot(lambda vec a-mu vec b)=0 (b) vec rdot(lambda vec b-mu vec a)=0 (c) vec rdot(lambda vec a+mu vec b)=0 (d) vec rdot(lambda vec b+mu vec a)=0

A vector equation of the line of intersection of the planes vec r = vec b + lambda_ (1) (vec b-vec a) + mu_ (1) (vec a + vec c) vec r = vec c + lambda_ (2) (vec b-vec c) + mu_ (2) (vec a + vec b) and vec a, vec b, vec c being non coplanar vectors is

The maxwells four equations are written as i. oint vec(E).vec(dS) = (q)/(epsilon_(0)) ii. oint vec(B).vec(dS) = 0 iii. oint vec(E ).vec(dl) = (d)/(dt) oint vec(B).vec(dS) iv. oint vec(B).vec(dl) = mu_(0) epsilon (d)/(dt) oint vec(E).vec(dS) The equations which have sources of vec(E ) and vec(B) are