Home
Class 10
MATHS
" If "cos^(2)theta-sin^(2)theta=(1)/(2),...

" If "cos^(2)theta-sin^(2)theta=(1)/(2)," then the value of "cos^(4)theta-sin^(4)theta" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

If cos^(4)theta-sin^(4)theta=(2)/(3) , then the value of 1-2sin^(2)theta is

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

If sin theta + sin^2 theta =1 , then the value of cos^2 theta + cos^ 4 theta is

If sin theta+sin^(2)theta+sin^(3)theta=1 then value of cos^(6)theta-4cos^(4)theta+8cos^(2)theta is

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

If cos^4 theta - sin^4 theta = 2/3 ,then the value of 1 - 2 sin^2 theta is

If cos^(4)theta-sin^(4)theta=(2)/(13) , find cos^(2)theta-sin^(2)theta+1 .

If 2cos theta+sin theta=1 then the value of 4cos theta+3sin theta is