Home
Class 12
MATHS
" If "x=cos t" and "y=sin t," prove that...

" If "x=cos t" and "y=sin t," prove that "(dy)/(dx)=(1)/(sqrt(3))" at "t=(2 pi)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cost " and " y=sint ,"prove : "(dy)/(dx)=1/(sqrt(3))"at " t=(2pi)/3

If x=cost " and " y=sint ,"prove : "(dy)/(dx)=1/(sqrt(3))"at " t=(2pi)/3

If x=sqrt(a^(sin^(-1)t)) then prove that (dy)/(dx)=(-y)/(x)

If x=a(cos t+t sin t) and y=a(sin t-t cos t)," find "(dy)/(dx) " at " t=(3pi)/(4)

If x=2 cos t+cos 2t and y=2 sin t-sin2t , then the value of (dy)/(dx) at t=(pi)/(4) is -

If x=a(t-sin t) and y=a(1+cos t) then (dy)/(dx)=

If x=sin t-t cos t and y = t sin t +cos t, then what is (dy)/(dx) at point t=(pi)/(2)?

If x = 2 cos t - cos 2 t and y =2 sin t - sin 2t, then (dy)/(dx) at t = (pi)/(2) is

If y=sin t -cos t and x=sin t+cost , then (dy)/(dx) at t=(pi)/(6) is :

If x=(sin^(3)t)/(sqrt(cos 2t)) and y=(cos^(3)t)/( sqrt(cos 2t)) , show that (dy)/(dx)=0 at t=(pi)/(6) .