Home
Class 13
MATHS
[" Let "f:(-1,oo)longrightarrow R" be de...

[" Let "f:(-1,oo)longrightarrow R" be defined by "f(0)=1" and "f(x)=(1)/(x)log_(e)(1+x),x!=0." Then the "],[" function "f:]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(-1,oo) rarr R be defined by f(0)=1 and f(x)=1/x log_(e)(1+x), x !=0 . Then the function f:

Let f:(-oo,-1)rarr R-{1} is defined as f(x)=(x)/(x+1) Find f^(-1)(x)

Let a function f:(1, oo)rarr(0, oo) be defined by f(x)=|1-(1)/(x)| . Then f is

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The above function can be classified as :

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The above function can be classified as :

Let f:R rarr R, f(x)=x+log_(e)(1+x^(2)) . Then f(x) is what kind of function

f:(0,oo)rarr(0,oo) defined by f(x)={2^(x),x in(0,1)5^(x),x in[1,oo) is

Let f:[-oo,0]rarr[1,oo) be defined as f(x)=(1+sqrt(-x))-(sqrt(-x)-x), then

f: R^(+) to R defined by f(x) = log_(e)x, x in (0,1), f(x) =2 log_(e) x, x in [1, infty) is