Home
Class 12
MATHS
Given A=[a(ij)]3xx3 be a matrix, where a...

Given `A=[a_(ij)]3xx3` be a matrix, where `a_(ij)={i-j if i != j and i^2 if 1=j` If `C_(ij)` be the cofactor of `a_(ij), in the matrix `A and B = [b_(ij)]3xx3` be a matrix such that bch that `b_(ij)=sum_(k=1)^3 a_(ij) c_(jk),` then the value of `[(3sqrt(det B))/8]` is equal to(where denotes greatest integer function and det B denotes determinant value of B)

Promotional Banner

Similar Questions

Explore conceptually related problems

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a 3xx4 matrix [a_(ij)] , where a_(ij)=2i-j .

Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)

Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)

Construct a 3xx3 matrix A=[a_(ij)] where a_(ij)=2(i-j)

A=[a_(ij)]_(3xx3) is a square matrix so that a_(ij)=i^(2)-j^(2) then A is a

Consider a matrix A=[a_(ij)]_(3xx3) , where a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):} if b_(ij) is cofactor of a_(ij) in matrix A and c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr) , then value of root3(det[c_(ij)]_(3xx3)) is

Consider a matrix A=[a_(ij)]_(3xx3) , where a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):} if b_(ij) is cofactor of a_(ij) in matrix A and c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr) , then value of root3(det[c_(ij)]_(3xx3)) is

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then det [C_(ij)]_(3xx3) is