Home
Class 12
MATHS
The line segment joining the points A,B ...

The line segment joining the points A,B makes projection `1,4,3 on x,y,z` axes respectively then the direction cosiners of AB are (A) 1,4,3 (B) `1/sqrt(26),4/sqrt(26),3/sqrt(26)` (C) `(-1)/sqrt(26, 4/sqrt(26),3/sqrt(26)` (D) `1/sqrt(26),(-4)/sqrt(26),3/(sqrt(26)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(26)xxsqrt(6.24)xxsqrt(102)=?

|(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5)|=

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

x=(sqrt(a+26)+sqrt(a-26))/(sqrt(a+26)-sqrt(a-26)) then show that 6x^(2)-ax+6=0

Find the value of |{:(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5):}|

Find the value of determinant |{:(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5):}| .

Find the value of determinant ,sqrt((13))+sqrt(3),2sqrt(5),sqrt(5)sqrt((15))+sqrt((26)),5,sqrt((10))3+sqrt((65)),sqrt((15)),5]|

Find the value of determinat |{:(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5):}| .