Home
Class 11
MATHS
int(1)^(oo)((x+1)e^(x)*ln x)dx...

int_(1)^(oo)((x+1)e^(x)*ln x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(1)^(e)((x+1)e^(x).ln x)dx is

If I_(1)=int_(0)^(oo)f((2)/(x)+(x)/(2))(ln x)/(x)dx,I_(2)=int_(0)^(oo)f((2)/(x)+(x)/(2))(dx)/(x) and I_(3)=int_(-oo)^( oo)xf(e^(x)+e^(x))dx then

The value of int_(1)^(e)(1)/(x)(1+log x)dx is

int_(a=)^(oo)ln(x+(1)/(x))(dx)/(1+x^(2))dx=(pi)/(2)ln a then

If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx

If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx

The value of int_(1)^(e)(1+x^(2)ln x)/(x+x^(2)ln x)*dx is :

int_(0)^(oo)log(x+(1)/(x))(dx)/(1+x^(2))

int_(0)^(oo)log(x+(1)/(x))(dx)/(1+x^(2))