Home
Class 12
MATHS
|[logx x y z,logx y,logx z],[log y xyz,1...

`|[log_x x y z,log_x y,log_x z],[log_ y xyz,1,log_y z],[log_z x y z,log_z y,1]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x, y, z being positive |[1, log _x y,log _x z],[log _y x,1,log _y z],[log _z x,log _z y, 1]|=

Prove that , |[1,log_x^y,log_x^z],[log_y^x,1,log_y^z],[log_z^x,log_z^y,1]|=0

Using properties of determinant show that |(1,log_x y,log_x z),(log_y x,1,log_y z),(log_z x,log_z y,1)|=0

|(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,log_(z)y,1)|=

What is the value of abs((1,log_x y, log_x z),(log_y x,1,log_y z),(log_z x,log_z y, 1)) ?

Find the value of |(1,log_(x) y,log_(x) z),(log_(y) x,1,log_(y) z),(log_(z) x,log_(z) y,1)| if x,y,z ne 1

Select and write the correct answer from the given alternatives in each of the following:If x>0 andx!=1,y>0 and y!=1,z>0 and z!=1, then the value of |(1,log_x (y),log_x (z)),(log_y (x),1,log_y (z)),(log_z (x),log_z (y),1)| is

Delta=|[log x ,log y, log z],[log 2 x, log 2 y, log 2 z],[log 3 x, log 3 y, log 3 z ]|=

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0