Home
Class 11
MATHS
If A = {x:f(x) =0} and B = {x:g(x) = 0},...

If `A = {x:f(x) =0} and B = {x:g(x) = 0}`, then `A uu B` will be the set of roots of the equation

Promotional Banner

Similar Questions

Explore conceptually related problems

If A={x:f(x)=0} and B={x:g(x)=0} then A cap B will be

Two distinct polynomials f(x) and g(x) defined as defined as follow : f(x) =x^(2) +ax+2,g(x) =x^(2) +2x+a if the equations f(x) =0 and g(x) =0 have a common root then the sum of roots of the equation f(x) +g(x) =0 is -

[ Let f and g be two real valued functions and S={x|f(x)=0} and T={x|g(x)=0}, then S nn T represent the set of roots of [ (a) f(x)g(x)=0, (b) f(x)^(2)+g(x)^(2)=0 (c) f(x)+g(x)=0, (d) (f(x))/(g(x))=0]]

Statement-1 If A = {x |g(x) = 0} and B = {x| f(x) = 0}, then A nn B be a root of {f(x)}^(2) + {g(x)}^(2)=0 Statement-2 x inAnnBimpliesx inAorx inB .

Statement-1 If A = {x |g(x) = 0} and B = {x| f(x) = 0}, then A nn B be a root of {f(x)}^(2) + {g(x)}^(2)=0 Statement-2 x inAnnBimpliesx inAorx inB .

Statement-1 If A = {x |g(x) = 0} and B = {x| f(x) = 0}, then A nn B be a root of {f(x)}^(2) + {g(x)}^(2)=0 Statement-2 x inAnnBimpliesx inAorx inB .

Statement-1 If A = {x |g(x) = 0} and B = {x| f(x) = 0}, then A nn B be a root of {f(x)}^(2) + {g(x)}^(2)=0 Statement-2 x inAnnBimpliesx inAorx inB .