Home
Class 12
MATHS
If P(x) is a polynomial degree four with...

If `P(x)` is a polynomial degree four with leading coefficient one such that `P(1)=2,P(2)=6,P(3)=12,P(4)=20.` Also `P(x)=0` has roots `alpha, beta, gamma` and `delta`. Then the value of `((alpha+3)(beta+3)(gamma+3)(delta+3))/(100)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let roots of the equation x^(4)-4x^(3)+6x^(2)-4x-15=0 are alpha,beta,gamma and delta then the value of (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(delta-1)+(delta-1)/(alpha-1)=

If p''(x) has real roots alpha,beta,gamma . Then , [alpha]+[beta]+[gamma] is

If alpha,beta,gamma,delta are the roots of x^(4)-x^(3)-7x^(2)+x+6=0 then alpha^(4)+beta^(4)+gamma^(4)+delta^(4)=

Let [1,3] be domain of f(x) .If domain of f(log_(2)(x^(2)+3x-2)) is [-alpha,-beta]uu[gamma ,delta]; alpha ,beta ,gamma ,delta>0 then the value of (alpha+beta+2 gamma+3 delta)/(17) is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If p is a constant and f(x) =|(x^2,x^3,x^4),(2,3,6),(p,p^2,p^3)| if f'(x)=0 have roots alpha,beta , then

If alpha,beta,gamma are the zeroes of p(x)=6x^(3)+3x^(2)-5x+1 then evaluate alpha^(-1)+beta^(-1)+gamma^(-1)

If P(x)=x^(6)-x^(5)-x^(3)-x^(2)-x & alpha, beta, gamma, delta are the roots of the equation Q(x)=x^(4)-x^(3)-x^(2)-1=0 Then P(alpha)+P(beta)+P(gamma)+P(delta)=

Let p(x)=x^(6)-x^(5)-x^(3)-x^(2)-x and alpha,beta,gamma,delta are the roots of the equation x^(4)-x^(3)-x^(2)-1=0 then P(alpha)+P(beta)+P(gamma)+P(delta)=