Home
Class 11
MATHS
Let a,b,c be the roots of the equation x...

Let `a,b,c` be the roots of the equation `x^(4)+x^(3)+x^(2)+x-1=0.` Let `f(x)=x^(6)-6x^(2)+6x+7` and `g(x)=px^(2)+qx+r` , `(p,q,r in R,p!=0).` If `f(a)=g(a); f(b)=g(b)` and `f(c)=g(c);` then the value of `(2)/(g(1))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)g (x) and g(1)=6, g'(x) 3 , find the value of f' (1).

Let f(x) = 3x^(2) + 6x + 5 and g(x) = x + 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x)

Let f:R rarr R defined by f(x)=x^(3)+e^((x/2)) and let g(x)=f^(-1)(x) then the value of g'(1) is

Let f:R rarr R defined by f(x)=x^(3)+e^(x/2) and let g(x)=f^(-1)(x) then the value of g'(1) is

Let f (x) = x^(3)+ 4x ^(2)+ 6x and g (x) be inverse then the vlaue of g' (-4):

Let f(x)=x^(2)+2px+2q^(2) and g(x)=-x^(2)-2px+p^(2) (where q ne0 ). If x in R and the minimum value of f(x) is equal to the maximum value of g(x) , then the value of (p^(2))/(q^(2)) is equal to

Let g(x)=x^(3)-4x+6. If f'(x)=g(x) and f(1)=2, then what is f(x) equal to?

Let g(x) be the inverse of the function f(x)=ln x^(2),x>0 . If a,b,c in R ,then g(a+b+c) is equal to

Let f:R rarr R be defined as f(x)=x^(3)+3x^(2)+6x-5+4e^(2x) and g(x)=f^(-1)(x) ,then find g'(-1)