Home
Class 12
MATHS
If cos p theta+cos q theta=0, then prove...

If `cos p theta+cos q theta=0`, then prove that the different values of `theta` are in A.P. with common difference `2pi// (p pm q)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

cos p theta=cos q theta,p!=q, thetn

If tan p theta = cot q theta and p ne -q show that the solution are in A.P with common difference (pi)/(p+q)

Statement I : If cos ((pi)/(3) cos 2 pi x)= sqrt(3) then the general solution of the equation is x = n pm (1)/(6), n in I Statement II : If tan P theta = tan Q theta , then the value of theta from an A.P with common difference (pi)/(P - Q) Which of the above statements are correct ?

Solve : cos p theta = sin q theta.

If cos ec theta+cot theta=p, then prove that cos theta=(p^(2)-1)/(p^(2)+1)

If cos p theta + cos q theta = 0 and if p ne q, then theta is equal to (n is any integer )