Home
Class 12
MATHS
if a,b,c are real then find the intervia...

if a,b,c are real then find the intervial in which `f(x)=|{:(x+a^2,ab,ac),(ab,x+b^2,bc),(ac,bc,x+c^2):}|` is decreasing.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are real numbers, then find the intervals in which f(x) = {:|(x+a^2,ab,ac),(ab,x+b^2,bc),(ac,bc,x+C^2)| is striclty increasing or decreasing.

If a, b, c are real numbers, then find the intervals in which : f(x)=|(x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))| is strictly increasing or decreasing.

|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=

|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)|

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

If f(x)={:abs((x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))):} , then find f'(x).

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?