Home
Class 12
MATHS
Find (dy)/(dx) using the rule (dy)/(dx)=...

Find `(dy)/(dx)` using the rule `(dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx):`
`y=cos^(-1) sqrt(2x-3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=e^(sqrt(cos x))

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=(1)/(sqrt(log sec x))

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=log_(2)(sin x^(3))

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y= sin sqrt(x^(2)+a^(2))

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx): y=sqrt(tan^(-1)x) assuming tan^(-1)x=u .

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx): y="cosec"^(3)x assuming "cosec"x=u .

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx): y=m^(ax^(2)+bx+c) assuming ax^(2)+bx+c=u .

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx) : y=log(ax+b)^(3) assuming ax+b=u .

Find (dy)/(dx) if y= cos^2x