Home
Class 12
MATHS
" If "cos y=x cos(a+y)" then prove that ...

" If "cos y=x cos(a+y)" then prove that ":(dy)/(dx)=(cos^(2)(a+y))/(sin a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosy=x cos(a+y)," prove that " (dy)/(dx) =(cos^(2)(a+y))/(sin a) , where a ne 0 is a constant .

If sin y = x cos (a + y) , prove that (dy)/(dx) = (cos^2 (a + y))/(cos a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If x sin (a + y) + sin a cos (a + y)= 0 , then prove that (dy)/(dx)= (sin^(2) (a + y))/(sin a)

If cos y=x cos (a+y) prove that (dy/dx)=(cos ^2(a+y))/sina