Home
Class 11
MATHS
If sinalpha=1/sqrt10 and sinbeta=1/sqrt5...

If `sinalpha=1/sqrt10` and `sinbeta=1/sqrt5` then prove that `alpha+beta=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinalpha=1/sqrt5 and sinbeta=3/5 , then beta-alpha lies in

If sinalpha=1/sqrt5 and sinbeta=3/5 , then beta-alpha lies in

If sinalpha=1/sqrt5 and sinbeta=3/5 , then beta-alpha lies in

If tanalpha=1/7 ,sinbeta=1/sqrt10 prove that alpha+2beta=(pi/4) where 0ltalphaltpi/2 and 0ltbetalt(pi//2)

If tan alpha=(1)/(7),sin beta=(1)/(sqrt(10)), prove that alpha+2 beta=(pi)/(4), where 0

If tanalpha=1/7,sinbeta=1/(sqrt(10)), prove that alpha+2beta=pi/4 , where 0

If tanalpha=1/7,sinbeta=1/(sqrt(10)), prove that alpha+2beta=pi/4 , where 0

If tanalpha=1/7,sinbeta=1/(sqrt(10)), prove that alpha+2beta=pi/4 , where 0

If tanalpha=1/7,sin beta=1/(sqrt(10)), prove that alpha+2beta=pi/4

If tan alpha=(1)/(7),sin beta=(1)/(sqrt(10)), Prove that :alpha+2 beta=(pi)/(4), where 0