Home
Class 11
MATHS
" iv "2^(log(3)5)-5^(log(3)2)...

" iv "2^(log_(3)5)-5^(log_(3)2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: 2^(log_(3)5)-5^(log_(3)2)

Evaluate: 2^(log_(3)5)-5^(log_(3)2)

Simplify: 2^((log)_(3)5)-5^((log)_(3)2)

The simplified value of the expression : 2^(log_(3)5)*2^(log_(3)5^(2)) - 5^(log_(3)2)*25^((log_(3)2)) is

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Simplify: 2^((log)_3 5)-5^((log)_3 2)

log_(3)(5+x)+log_(8)8=2^(2)

(iv) Find the product of roots of the equation (log_(3)x)^(2)-2(log_(3)x)-5=0