Home
Class 11
MATHS
log(a)[1+log(b)(1+log(c)(1+log(d)x))]=0...

log_(a)[1+log_(b)(1+log_(c)(1+log_(d)x))]=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x, satisfiying log_(a)(1+log_(b){1+log_(c)(1+log_(p)x)})=0 is

The value of N satisfying log_(a)[1+log_(b){1+log_(c)(1+log_(p)N)}]=0 is

The value of N satisfying log_(a)[1+log_(b){1+log_(c)(1+log_(p)N)}]=0 is

If a,b,c gt1 then Delta=|(log_(a)(abc),log_(a)b,log_(a)c),(log_b(abc),1,log_(b)c),(log_(c)(abc),log_(c)b,1)| equals

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

Find the value of x satisfying "log"_a(1+"log"_b{1+"log"_c(1+"log"_px)})=0

Show that log_(b)a log_(c)b log_(a)c=1

(1)/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c)

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

(1)/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c) has the value equal to