Home
Class 12
MATHS
int(0)^(1)(x-1)e^(-x)dx=?...

int_(0)^(1)(x-1)e^(-x)dx=?

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(1+e^(-x))dx=

Consider the intergral A=int_(0)^(1)(e^(x)-1)/(x)dx and B=int_(0)^(1)(x)/(e^(2)-1)dx . Then, which of the following is incorrect?

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(1)x^(m)(log_(e).(1)/(x))dx=

int_(0)^(1) x e^(x) dx=1

int_(0)^(1) x e^(x) dx=1

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))