Home
Class 12
MATHS
" 18.Function "f:R rarr R;f(x)=(e^(x^(2)...

" 18.Function "f:R rarr R;f(x)=(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2)))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R defined by f(x)=(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))), then f(x) is

If f:[0,oo[rarr R is the function defined by f(x)=(e^(z^(2))-e^(-x^(2)))/(e^(x^(2))-e^(-x^(2))), then check whether f(x) is injective or not.

f:R to R is defined by f(x)= =(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))) , is

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

If f: R to R defined by f(x) =(e^(x^(2)) -e^(-x^(2)))/(e^(x^(2)) +e^(-x^(3))) , then f is

f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

If f:[0,oo]toR is the function defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)), then check whether f(x) is injective or not.

If the function of f:R rarr A is given by f(x)=(e^(x)-e^(-|x|))/(e^(x)+e^(|x|)) is surjection,find A

Let f:R rarr R" be defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)). Then