Home
Class 6
MATHS
12.3-[x-{2y-(5x+y-3)+2x^(2)}-(x^(2)-3y)]...

12.3-[x-{2y-(5x+y-3)+2x^(2)}-(x^(2)-3y)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of D.E (dy)/(dx)=(2x+5y)/(2y-5x+3) is,if (y(0)=0) (1) x^(2)-y^(2)+5xy-3y=0 (2) x^(2)+y^(2)+5xy-3y=0 (3) x^(2)-y^(2)+5xy+3y=0 (4) x^(2)-y^(2)-5xy-3y=0

Find the following products and verify the result for x=-1,y=-2:(3x-5y)(x+y)(2)(x^(2)y-1)(3-2x^(2)y)((1)/(3)x-(y^(2))/(5))((1)/(3)x+(y^(2))/(5))

(5x + 3y) (5x-3y) (25x ^ (2) + 9y ^ (2))

Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))

Evaluate x and y if [(x,2),(-3,y)]=2[(x^(2),1),(-(3)/(2),3y-5)] .

(x+y)^(3)-(x-y)^(3) can be factorized as 2y(3x^(2)+y^(2)) (b) 2x(3x^(2)+y^(2))2y(3y^(2)+x^(2)) (d) 2x(x^(2)+3y^(2))

Evaluate: (2x+3y)^(2)( ii) (2x-3y)^(2)(2x+3y)2x-3y)

Factorise 25x^(2) - 30xy + 9y^(2) . The following steps are involved in solving the above problem . Arrange them in sequential order . (A) (5x - 3y)^(2) " " [ because a^(2) - 2b + b^(2) = (a-b)^(2)] (B) (5x)^(2) - 30xy + (3y)^(2) = (5x)^(2) - 2(5x)(3y) + (3y)^(2) (C) (5x - 3y) (5x - 3y)