Home
Class 11
MATHS
" 17) If "A=[[lambda,1],[-1,-lambda]]" t...

" 17) If "A=[[lambda,1],[-1,-lambda]]" then "A^(-1)" does not exist if "lambda=

Promotional Banner

Similar Questions

Explore conceptually related problems

Select the correct option from the given alternatives.If A = [[lambda,1],[-1,-lambda]] then A^-1 does not exist if lambda = i]0 ii]± 1 iii]2 iv]3

If A = [(lambda,1),(-1,-lambda)] , then for what value of lambda,A^(2)=0 ?

Let A=[[x+lambda,x,x] , [x,x+lambda,x] ,[x,x,x+lambda]] then A^(-1) exists if (A) x!=0 (B) lambda!=0 (C) 3x+1!=0 , lambda!=0 (D) x!=0 , lambda!=0

If A = [{:(lambda,1),(-1,-lambda):}] , then for what values of lambda, A^(2) =0 ? …………..

A=[[2-lambda,-1,0-1,2-lambda,-10,-1,2-lambda]] then find out

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

Number of integral values of lambda for which (lim)_(x to 1)sec^(-1)((lambda^2)/((log)_e x)-(lambda^2)/(x-1)) does not exist is a. 1 b. 2 c. 3 d. 4

Number of integral values of lambda for which limsec ^(-1)((lambda^(2))/(log_(ex))-(lambda^(2))/(x-1)) does not exist is a.1 b.2 c.3 d.4

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0