Home
Class 12
MATHS
Solve the following cos2theta=(sqrt(2)+1...

Solve the following `cos2theta=(sqrt(2)+1)(costheta-1/sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos2 theta-(sqrt(2)+1)(cos theta-(1)/(sqrt(2)))=0

Solve the following: cos 2theta=(sqrt2+1)(costheta-frac{1}{sqrt2})

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

Solve for theta : cos2theta = (sqrt2+1)(costheta - (1)/(sqrt2)) .

Solve for theta : cos2theta = (sqrt2+1)(costheta - (1)/(sqrt2)) .

If cos theta ne 1/2, then the solution of the equation cos 2 theta =(sqrt2 +1) (cos theta -(1)/(sqrt2)) are-

Solve that following equations : (sqrt(3)-1)costheta+(sqrt(3)+1)sin theta=2

Solve that following equations: (sqrt(3)-1)cos theta+(sqrt(3)+1)sin theta=2