Home
Class 12
MATHS
Prove that underset(xrarr0)lim(sinx/x=1)...

Prove that `underset(xrarr0)lim(sinx/x=1)` ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that underset(xrarr0)limsinx/x=1 ?

Prove that underset(xrarr0)lim (a^x-1)/x= log a .

underset(xrarr0)"lim"(sin3x)/(sinx) =

underset (xrarr0)lim x^(x)

Prove that, underset(xrarr0)lim (logcosx)/sin^2x = -1/2

Prove that underset(xrarr0)"lim"(3x+|x|)/(7x-5|x|) does not exist .

underset(xrarr0)"lim"(sinx)/(sqrt(x)) is -

Prove : underset(xrarr0)"lim"(tanx-sinx)/(x^(3))=(1)/(2)

Prove : underset(xrarr0)"lim"((1)/(sinx)-(1)/(tanx))=0

Prove : underset(xrarr0)"lim"(tanx-sinx)/(1-cosx)=0