Home
Class 11
MATHS
[1+xquad 1*xquad 1*x],[1*xquad 1+xquad 1...

[1+xquad 1*xquad 1*x],[1*xquad 1+xquad 1-x],[1-xquad 1-xquad 1+x]

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of real roots of the equation [[1, x, x], [ x, 1, x],[ x, x, 1]|+|[1-x , 1, 1], [1 , 1-x , 1 ],[ 1 , 1, 1-x]|=0 is

Solve det[[1+x,1-x,1-x1-x,1+x,1-x1-x,1-x,1+x]]=0

If |(1+x,1-x,1-x),(1-x,1+x,1-x),(1-x,1-x,1+x)|=0 then x=

Select and write the correct answer from the given alternatives in each of the following:The roots of equation |(1+x,1-x,1-x),(1-x,1+x,1-x),(1-x,1-x,1+x)| =0 are

Solve that |{:(1+x,1-x,1-x),(1-x,1+x,1-x),(1-x,1-x,1+x):}|=0

The factor of x^8 + x^4 +1 are (A) (x^4 + 1 - x^2), (x^2 +1 +x), (x^2 + 1 - x ) (B) x^4 + 1 -x^2 , (x^2 - 1 + x), (x^2 +1 + x) (C ) (x^4 - 1 + x^2, (x^2 - 1 + x), (x^2 + 1 + x) (D) (x^4 -1 + x^2), (x^2 + 1 - x), (x^2 + 1 +x)

Let f(x) = x(1/(x - 1) + 1/x + 1/(x + 1)), x gt 1 , Then

Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1