Home
Class 11
MATHS
Find the adjoint and inverse matrix of [...

Find the adjoint and inverse matrix of `[[cosalpha,-sinalpha],[sinalpha,cosalpha]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the adjoint and inverse of the matrix [{:(cosalpha,-sinalpha),(sinalpha,cosalpha):}]

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

Find the adjoint of the following matrices: [(cosalpha,sinalpha),(sinalpha,cosalpha)] (ii) [(1,tanalpha//2),(-tanalpha//2, 1)] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.

If A=[(cas alpha, sinalpha),(-sinalpha,cosalpha)], AA'=

Select the correct option from the given alternatives.If A = [[cosalpha,sinalpha],[-sinalpha,cosalpha]] then A^-1 = ? 1) [[frac{1}{cosalpha},-frac{1}{sinalpha],[frac{1}{sinalpha},frac{1}{cosalpha]] 2) [[cosalpha,-sinalpha],[sinalpha,cosalpha]] 3) [[-cosalpha,sinalpha],[-sinalpha,cosalpha]] 4) [[-cosalpha,sinalpha],[sinalpha,-cosalpha]]

Answer the following questions.If A=[[cosalpha,-sinalpha],[sinalpha,cosalpha]] and A+A^T=I ,where I is unit matrix 2x2,then find the value of alpha

Find the inverse of [(1, 0, 0),( 0,cosalpha,sinalpha),(0,sinalpha,-cosalpha)]

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then