Home
Class 12
MATHS
" 1."sin[cos^(-1)x]=cos[sin^(-1)x]...

" 1."sin[cos^(-1)x]=cos[sin^(-1)x]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin(cos^(-1)x)-cos(sin^(-1)x) is

The value of sin(cos^(-1)x)-cos(sin^(-1)x) is-

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

If f(x)={{:(sin(cos^(-1)x)+cos(sin^(-1)x)",",xle0),(sin(cos^(-1)x)-cos(sin^(-1)x)",",xgt0):} then at x = 0

If the solution of the equation sin(tan^(-1)x)=sqrt(4-(sin(cos^(-1)x)+cos(sin^(-1)x))^(2)) is a , then a=

Of the solution of equation "sin"(tan^(-1)x)=sqrt(4-["sin"(cos^(-1)x)+"cos"(sin^(-1)x)]^2) is a , then sin^(-1)a+cos^(-1)a=pi/2 2sin^(-1)a+cos^(-1)a=pi/2 sin^(-1)a+3cos^(-1)a=(3pi)/2 tan^(-1)a+cos^(-1)a=pi/2

If 0

If 0 < cos^-1(x) <1 and 1+sin(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-1)x) + ..... =2 then the value of 12 x^2 is____

If 0 < cos^(-1)x < 1 and 1+sin(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-1)x)....+oo=2, then the value of 12 x^2 is____.