Home
Class 11
MATHS
1+(2)/(2)+(3)/(2^(2))+(4)/(2^(3))+.........

1+(2)/(2)+(3)/(2^(2))+(4)/(2^(3))+......

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+ . . . y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+ . . . . z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+ . . .then

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+.... and z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+... then

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+.... and z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+... then

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+.... and z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+... then

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+.... and z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+... then

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+....=