Home
Class 12
MATHS
Solve for a,b,c,d when [[b+c,c+a],[7-d,6...

Solve for a,b,c,d when `[[b+c,c+a],[7-d,6-c]]=[[9-d,8-d],[ a+b, a+b]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for a, b, c and d when ((b+c,c+a),(7-d,6-c))=((9-d,8-d),(a+b,a+b))

Solve for a, b, c and d when {:((b+c,c+a),(7-d,6-c))={:((9-d,8-d),(a+b,a+b)):}

Solve for a,b,c and d when ((b+c, c+a), (7 - d ,6 -c)) = ((9-d, 8-d),(a+b,a+b)) .

The value of [[a,b,c,d],[-a,b,c,d],[-a,-b,c,d],[-a,-b,-c ,d]] is

If A=[[a, b],[ c ,d]] , then a d j\ A is (a) [[-d,-b],[-c, a]] (b) [[d,-b],[-c ,a]] (c) [[d, b],[ c, a]] (d) [[d, c],[ b ,a]]

If A=[[a, b],[ c ,d]] , then a d j\ A is [[-d,-b],[-c, a]] (b) [[d,-b],[-c ,a]] (c) [[d, b],[ c, a]] (d) [[d, c],[ b ,a]]

If D=|[a,b,c], [c,a,b], [b,c,a]| and D'=|[b+c, c+a, a+b], [a+b, b+c, c+a], [c+a, a+b, b+c]|, then prove that D' = 2D

Let the positive numbers a , b , c , d be in AP. Then a b c ,a b d ,a c d ,b c d are

Let D_1=|[a, b, a+b], [c, d, c+d], [a, b, a-b]| and D_2=|[a, c, a+c], [b, d, b+d], [a, c, a+b+c]| then the value of |(D_1)/(D_2)| , where b!=0 and a d!=b c , is _____.