Home
Class 12
MATHS
tan((1)/(2)sin^(-1)(2x)/(1+x^(2))+(1)/(2...

tan((1)/(2)sin^(-1)(2x)/(1+x^(2))+(1)/(2)cos^(-1)(1-x^(2))/(1+x^(2)))=(2x)/(1-x^(2))(|x|!=1)

Promotional Banner

Similar Questions

Explore conceptually related problems

To prove that tan((1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))=(2x)/(1-x^(2))

tan((1)/(2) sin ^(-1)""(2x)/(1+x^(2))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2))))=(2x)/(1-x^(2))(|x|ne 1)

tan{(1/2)sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-y^(2))/(1+y^(2)))} .

sin[cot^(-1)((2x)/(1-x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))]=

tan[1/2sin^(-1)((2x)/(1+x^(2)))-1/2cos^(-1)((1-y^(2))/(1+y^(2)))]=

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

tan[1/2Sin^(-1)((2x)/(1+x^(2)))-1/2Cos^(-1)((1-y^(2))/(1+y^(2)))]=

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then