Home
Class 11
MATHS
int(e^(-1))^(e^(2))|(ln x)/(x)|dx...

int_(e^(-1))^(e^(2))|(ln x)/(x)|dx

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of integral int_(e^(-1))^(e^2) |(log_e x)/(x)| dx is :

The value of the integral int_(e^(-1))^(e^(2)) |(log_(e)x)/(x)|dx is

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_(e^(-1))^(e^(2))|((log)_(e)x)/(x)|dx is (A) (3)/(2)(B)(5)/(2)(C)3(D)5

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

int_((1)/(e))^(1)|(ln x)/(x)|dx=

int_(e )^(e^(2))log x dx =