Home
Class 10
MATHS
Prove each of the following identities :...

Prove each of the following identities :
` (tan^(2) theta)/((1+ tan^(2) theta)) + (cot^(2) theta)/((1+ cot^(2) theta)) =1 `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove each of the following identities : (tan theta)/((1+ tan^(2) theta)^(2)) + (cot theta)/((1+ cot^(2) theta)^(2)) = sin theta cos theta

Prove each of the following identities : (i) (1- tan^(2) theta)/(1+ tan^(2) theta) = ( cos^(2) theta - sin^(2) theta) (ii) (1- tan^(2) theta)/(cot^(2) -1) = tan^(2) theta

( tan^(3) theta )/( 1+ tan^(2) theta )+ ( cot^(3) theta )/( 1+ cot^(2) theta )=

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

Prove each of the following identities : (1+ tan^(2) theta)(1+ cot^(2) theta)=(1)/((sin^(2) theta- sin^(4) theta))

Prove each of the following identities : ((1+ tan^(2) theta) cot theta)/("cosec"^(2) theta ) = tan theta

Prove each of the following identities : (tan theta)/((1-cot theta)) + (cot theta)/((1- tan theta)) = (1+ sec theta "cosec" theta)

Prove that following identities (1-tan^(2)theta)/(cot^(2)theta-1)=tan^(2)theta

Prove that following identities (1-tan^(2)theta)/(cot^(2)theta-1)=tan^(2)theta