Home
Class 12
MATHS
Find the period of the following functi...

Find the period of the following functions
(i) ` f(x)=|sin 3x|`
(ii) `f(x)=2"cosec"(5x-6)+7`
(iii) ` f(x) =x-[x-2.6],` where [.] represents the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

f:(2,3)->(0,1) defined by f(x)=x-[x] ,where [dot] represents the greatest integer function.

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)