Home
Class 11
MATHS
Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!...

Prove that `((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (n-r+1)((n!)/((n-r+1)!))=((n!)/((n-r)!))

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that n(n-1)(n-2) ...(n-r+1)=(n!)/((n-r)!).

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)= ((n+1)!)/ (r!(n-r+1)!) .

Prove that: n(n-1)(n-2)....(n-r+1)=(n !)/((n-r)!)

Prove that: n(n-1)(n-2)…..(n-r+1)=(n!)/((n-r)!)

Prove that n(n-1)(n-2)......(n-r+1)=(n!)/(n-r)!