Home
Class 12
MATHS
Lt(n rarr oo)[(1^(3))/(n^(4)+1^(4))+(2^(...

Lt_(n rarr oo)[(1^(3))/(n^(4)+1^(4))+(2^(3))/(n^(4)+2^(4))+...+(1)/(2n)]=

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(n rarr oo)[(1^(3))/(n^(4)+1^(4))+(2^(3))/(n^(4) + 2^(4))+....+(n^(3))/(n^(4)+n^(4))]

Lt_(ntooo)[(1^(3))/(n^(4)+1^(4))+(2^(3))/(n^(4)+2^(4))+.........+(1)/(2n)]=

lim_ (n rarr oo) [(1 ^ (3)) / (n ^ (4) + 1 ^ (4)) + (2 ^ (3)) / (n ^ (4) + 2 ^ (4)) ++ (1) / (2n)] =

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

lim_(n rarr oo)(((n+1)^(1/3))/(n^(4/3))+((n+2)^(1/3))/(n^(4/3))+.....+((2n)^(1/3))/(n^(4/3))) is equal to

lm_ (n rarr oo) ((1 ^ (3)) / (n ^ (4)) + (2 ^ (4)) / (n ^ (4)) + (3 ^ (3)) / (n ^ (4)) + ...... + (n ^ (3)) / (n ^ (4)))

Lt_(n rarr oo)[(1)/(n+1) + (1)/(n+2)+..(1)/(2n)]

Lt_(n rarr oo)[(1+(1)/(n^(2)))^((2)/(n^(2)))(1+(2^(2))/(n^(2)))^((4)/(n^(2)))(1+(3^(2))/(n^(2)))^((6)/(n^(2))).....(1+(n^(2))/(n^(2)))^((2n)/(n^(2)))]

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))