Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that `|[(a+1)(a+2),a+2,1],[(a+2)(a+3),a+3,1],[(a+3)(a+4),a+4,1]|=-2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants,prove that ([(a+1)(a+2),a+2,1(a+2)(a+3),a+3,1(a+3)(a+4),a+4,1]|=-2

Using properties of determinants, prove that 3 2 (a 1) 3 3 1 2a 1 a 2 1 a 2a 2a

Show that |((a+1)(a+2),a+2,1),((a+2)(a+3),a+3,1),((a+3)(a+4),a+4,1)|=-2

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants prove that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Using properties of determinants,prove that det[[a^(2)+2a,2a+1,12a+1,a+2,13,3,1]]=(a-1)^(3)

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

Using properties of determinants, prove the following: |[1,a,a^2],[a^2,1,a],[a,a^2,1]|=(1-a^3)^2

Using properties of determinant, prove that |{:( 1,a,a^(2)),(a^(2) , 1,a),( a,a^(2),1):}|=(a^(3) -1)^(2)