Home
Class 12
MATHS
f(x)=x^2-1 and g(x)={[|f(x)|]+|[f(x)]| :...

`f(x)=x^2-1` and `g(x)={[|f(x)|]+|[f(x)]|` : `x=(-1,0) uu(0,1)`, 1;otherwise} then find the range of ln([|g(x)|]), where [.] denotes the greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The range of f(x)=[4^(x)+2^(x)+1] (where [.] denotes greatest integer function) is

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

Find the domain and range of f(x)=log[cos|x|+(1)/(2)], where [.] denotes the greatest integer function.

Find the range of the following function: f(x)=ln(x-[x]), where [.] denotes the greatest integer function

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then