Home
Class 9
MATHS
The value of 81^(1/log5(3))+27^(log9(36)...

The value of `81^(1/log_5(3))+27^(log_9(36))+3^(4/log_7(9))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of OF 81^(1/(log_5(3)))+27^(log_9(36))+3^(4/(log_7(9))) is equal to (a) 49 ((b)625 (c) 216 (d) 890

Find the value of 81^((1/log_(5)3))+(27^(log_(9)36))+3((4)/(log_(9)9))

Evaluate: 81^(1//log_(5)3) + 27^(log_(9)36) + 3^(4//log_(l)9)

Evaluate: 81^(1//log_(s)3) + 27^(log_(g)36) + 3^(4//log_(l)9)

(1)/(log_(3)2)+(2)/(log_(9)4)-(3)/(log_(27)8)=0

The value of (log_(3) 5 xx log_(25) 27 xx log_(49) 7)/(log_(81)3) is

Find the value of 3^((4)/(log_(2)9))+27^((1)/(log_(49)9))+81^((1)/(log_(4)3))