Home
Class 12
MATHS
Find the order and degree of the followi...

Find the order and degree of the following differential equation: `(dy)/(dx)+y=1/((dy)/(dx))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the order and degree of the following differential equation: (dy)/(dx)+y=(1)/(dx)

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^((d^(3)y)/(dx^(3)))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)((dy)/(dx))=x+y , iv) log_(e)((dy)/(dx))=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

Find the order and degree of the following differential equation: (d^2y)/(dx^2)=[y+((dy)/(dx))^6]^(1/4)

Find the order and degree of the following differential equation: (d^2y)/(dx^2)=[y+((dy)/(dx))^6]^(1/4)

Find the order and degree of the following differential equation: (d^2y)/(dx^2)=[y+((dy)/(dx))^6]^(1/4)

Find the order and degree of the following differential equations. (dy)/(dx)+y=logx