Home
Class 9
MATHS
if x=2^sqrt5 * 5^sqrt2 then log10 x=(sqr...

if `x=2^sqrt5 * 5^sqrt2` then `log_10 x=(sqrtA-sqrtB)log_10 2+sqrtB` then find `A+B`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrta + sqrtb)^2 = ?

If sqrta : sqrtb = sqrt3 : sqrt2 " and " sqrtb : sqrtc = sqrt3 : sqrt2 , then find the value of (sqrta + sqrtb ) : ( sqrtb + sqrtc) .

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x

log_(10)^(x)-log_(10)sqrt(x)=2log_(x)10. Find x

Find the domain of log_10 (1-log_10(x^2-5x+16))

The domain of sqrt(log_10((5x-x^2)/4)) is

The domain of sqrt(log_10((5x-x^2)/4)) is

The domain of sqrt(log_10((5x-x^2)/4)) is

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :