Home
Class 12
MATHS
lim(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((...

`lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo){1/1.3+1/3.5+1/5.7+...+1/((2n+1)(2n+3))} is

lim_(n->oo)(1+1/5)(1+1/5^4)(1+1/5^4)......(1+1/5^(2^n)) is equal to :

lim_(n rarr oo){(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+....+(1)/((2n+1)(2n+3 ))

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

underset(n to oo)lim {(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+.....+(1)/((2n-1)(2n+1))}=

Lt_(x to oo)((1)/(3.5)+(1)/(5.7)+.....+(1)/((2n+1)(2n+3)))=