Home
Class 11
MATHS
If a complex number z satisfies |2z+10+...

If `a` complex number `z` satisfies `|2z+10+10i| le 5sqrt3-5,` then the least principal argument of `z` is : (a) `-(5pi)/6` (b) `(11pi)/12` (c) `-(3pi)/4` (d) `-(2pi)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a complex number z satisfies |2z+10+10 i|lt=5sqrt(3)-5, then the least principal argument of z is

If a complex number z satisfies |2z+10+10 i|lt=5sqrt(3)-5, then the least principal argument of z is

If a complex number z satisfies |2z+10+10i|<=5sqrt(3)-5, then the least principal argument of z is :(a)-(5 pi)/(6) (b) (11 pi)/(12)( c) -(3 pi)/(4)(d)-(2 pi)/(3)

If a complex number z satisfies |2z+10+10 i|lt=3sqrt(3)-5, then the least principal argument of z is a. -(5pi)/6 b. -(11pi)/(12) c. -(3pi)/4 d. -(2pi)/3

If z=sqrt(3)-2+i , then principal value of argument z is (where i=sqrt(-1) (1) -(5pi)/(12) (2) pi/(12) (3) (7pi)/(12) (4) (5pi)/(12)

If z=sqrt(3)-2+i, then principal value of argument z is (where i=sqrt(-1)-(5 pi)/(12)(2)(pi)/(12) (3) (7 pi)/(12) (4) (5 pi)/(12)

The argument of (1-i)/(1+i) is a. -pi/2 b. pi/2 c. (3pi)/2 d. (5pi)/2

If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3) , then ( omega is complex imaginary number)

If sqrt(5-12i)+sqrt(-5-12i)=z ,then principal value of argz can be (pi)/(4) b.(pi)/(4) c.(3 pi)/(4) d.-(3 pi)/(4)

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5