Home
Class 12
MATHS
The value of integral int(-1)^3 (tan^(-1...

The value of integral `int_(-1)^3 (tan^(-1) (x/(x^2+1))+tan^(-1)((x^2+1)/x))dx` is equal to (A) `pi` (B) `2pi` (C) `4pi` (D) `6pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

The value of int_-1^3 [tan^-1(x/(x^2+1))+tan^-1((x^2+1)/x)]dx= (A) pi/2 (B) 2pi (C) pi (D) pi/4

The value of I = int_0^(pi/4) (tan^(n+1)x)dx + 1/2 int_0^(pi/2) tan^(n-1)(x/2) dx is equal to

int _ (-2)^(1) (tan^(-1) ((x)/(x^(2) +1))+tan^(-1) ((x^(2) +1)/( x))) dx is (i) (pi)/(2) (ii)-(pi)/(2) (iii) pi (iv) -pi

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

The value of I=int_(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int_(0)^(pi//2)tan^(n-1)((x)/(2))dx is equal to

int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to