Home
Class 12
MATHS
यदि siny=xcos(a+y) हो तो सिद्ध कीजिए कि ...

यदि `siny=xcos(a+y)` हो तो सिद्ध कीजिए कि
`(dy)/(dx)=(cos^(2)(a+y))/(cosa)`

Promotional Banner

Similar Questions

Explore conceptually related problems

x(dy)/(dx)=y-xcos^(2)(y/x)

If cosy=xcos(a+y) , where cosa!=-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina)

If cosy=xcos(a+y) , with cosa!=+-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina) .

If cosy=xcos(a+y) , with cosa!=+-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina) .

If cosy=xcos(a+y),(ane0) , then show that (dy)/(dx)=(cos^2(a+y))/(sina) .

If siny=xcos(a+y) , then (dy)/(dx) is equal to (a) (cos^2(a+y))/(cosa) (b) (cosa)/(cos^2(a+y)) (c) (sin^2y)/(cosa) (d) none of these

If cos y = x cos (a+y) Then prove that (dy)/(dx) = (cos^(2) (a+y))/(sin a ) , cosa ne +-1

सिद्ध कीजिए कि 2tan^(-1)sqrt((b)/(a))=cos^(-1)((a-b)/(a+b))

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot