Home
Class 12
MATHS
Let A=[(1, x//n), (-x//n , 1)], then lim...

Let `A=[(1, x//n), (-x//n , 1)]`, then `lim_(n->oo) A^n` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A={:[(1,x/n),(-x/n,1)]:},"then "lim_(ntooo) A^(n) is:

Let A={:[(1,x/n),(-x/n,1)]:},"then "lim_(ntooo) A^(n) is

Let A=[[1,(x)/(n)-(x)/(n),1]] then lim_(n rarr oo)A^(n) is

Let A=[[1,x/n-x/n,1]], then lim_(n rarr oo)A^(n) is

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

If x_1=3 and x_ +1= sqrt(2+x_n), n ge 1 , then lim_(nto oo) x_n is equal to

Let A,=([1,-(x)/(n)(x)/(n),1]),B=([0,-11,0]) then lim_(x rarr0)[lim_(n rarr oo)(1)/(x)(I-A^(n))] equals

The value of lim_(n->oo) n^(1/n)

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n)),n<=1, then lim_(n rarr oo)x_(n) is