Home
Class 12
MATHS
|[x, x^2-yz, 1] , [y, y^2-zx, 1] , [z, z...

`|[x, x^2-yz, 1] , [y, y^2-zx, 1] , [z, z^2-xy, 1]|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]|= 0

show tha |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]| =0

The value of |{:(x,x^2-yz,1),(y,y^2-zy,1),(z,z^2-xy,1):}| is

Prove the following : |(1,x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy)|=0 .

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

By using properties of determinants, prove that |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x).(xy+yz+zx)

By using properties of determinants , show that : {:|( x,x^(2) , yz) ,( y,y^(2) , zx ) ,( z , z^(2) , xy ) |:} =( x-y)(y-z) (z-x) (xy+yz+ zx)