Home
Class 11
MATHS
" 8."lm(sqrt(a+i sqrt(a^(4)+a^(2)+1)))=...

" 8."lm(sqrt(a+i sqrt(a^(4)+a^(2)+1)))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Im(sqrt(a+i sqrt(a^(4)+a^(2)+1)))

If sqrt2 = 1.414… and sqrt8 = 2.828…. then (sqrt2 + sqrt8)^(2) =

The value of 2xx2^(1//2)xx2^(1//4)xx2^(1//8)xx ….xx oo is (i) 4 (ii) sqrt(2) (iii) 2sqrt(2) (iv) 8

The value of (sqrt(2)+sqrt(bar(z)))^(4)+ and (sqrt(2)-sqrt(bar(z)))^(4) are respectively(where z=4+3sqrt(20)i,i=sqrt(-1))

Show that ((1)/( sqrt2) + (i)/( sqrt2 )) ^( 10) + ((1)/( sqrt2 ) - (i)/( sqrt2 )) ^( 10 ) = 0

Simplify the following (i) sqrt45-3sqrt20+4sqrt5 (ii) sqrt(24)/8 + sqrt54/9 (iii) root4(12) xx root7(6) (iv) 4sqrt28 div 3sqrt7 div root3(7) (v) 3sqrt3+2sqrt27 + 7/(sqrt3) (vi) (sqrt3-sqrt2)^(2) (vii) root4(81)-8root3(216)+15root5(32)+ sqrt225 (viii) 3/sqrt8+ 1 / sqrt2 (ix) (2sqrt3)/3- (sqrt3)/6

If i=sqrt(-)1, then 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(365) is equal to (1)1-i sqrt(3)(2)-1+i sqrt(3)(3)i sqrt(3)(4)-i sqrt(3)

The value of ("lim")_(xvec2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

The value of ("lim")_(xto2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these