Home
Class 12
MATHS
" (i) "y=(x+1)^(3)(2x+1)^(5)...

" (i) "y=(x+1)^(3)(2x+1)^(5)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

Find the following products and verify the result for x=-1,y=-2:(3x-5y)(x+y)(2)(x^(2)y-1)(3-2x^(2)y)((1)/(3)x-(y^(2))/(5))((1)/(3)x+(y^(2))/(5))

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

If 0ltylt2^(1//3) and x(y^(3)-1)=1 then (2)/(x)+(2)/(3x^(3))+(2)/(5x^(5)) +…=

If 0ltylt2^(1//3) and x(y^(3)-1)=1 then (2)/(x)+(2)/(3x^(3))+(2)/(5x^(5)) +…=

If y=(1)/(2x^(2)-1)" then "y+(y^(3))/(3)+(y^(5))/(5)+....=

Find the S.D. between the lines : (i) (x)/(2) = (y)/(-3) = (z)/(1) and (x -2)/(3) = (y - 1)/(-5) = (z + 4)/(2) (ii) (x -1)/(2) = (y - 2)/(3) = (z - 3)/(2) and (x + 1)/(3) = (y - 1)/(2) = (z - 1)/(5) (iii) (x + 1)/(7) = (y + 1)/(-6) = (z + 1)/(1) and (x -3)/(1) = (y -5)/(-2) = (z - 7)/(1) (iv) (x - 3)/(3) = (y - 8)/(-1) = (z-3)/(1) and (x + 3)/(-3) = (y +7)/(2) = (z -6)/(4) .